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J.  Phys. A: Math., Nucl. Gen., Vol. 6, May 1973. Printed in Great Britain. Q 1973 

On gradient-induced instabilities 

R H C Newton and D M Short 
School of Electronic Engineering Science, University College of North Wales, Dean Street, 
Bangor, Caerns, UK 

MS received 26 July 1972, in revised form 10 November 1972 

Abstract. It is shown that the unstable behaviour ofa  single-carrier stream in the presence of a 
carrier density gradient is due to wave interaction between an active mode and a passive 
mode: modes which do not couple when the carrier density is uniform. 

1. Introduction 

Of the many known instabilities in a plasma system most are explained in terms of an 
interaction between different components of the system. For example unstable behaviour 
is expected when electron streams and plasmas interact. Again collision-induced 
instabilities in solid-state plasmas require the presence of holes in the case of longitudinal 
waves. An apparent exception occurs in the case of transverse waves when a collision- 
induced instability can exist (theoretically) when no holes are present. However, in this 
case the lattice itself plays the r61e of the second component of the system (see eg Steele 
and Vural 1969). 

Recently a class of instability, which we shall call gradient-induced, has been proposed. 
One example which depends on temperature gradient as well as carrier density gradient 
has already been reported (Boyd et al 1972). A feature of this class of instability is that, 
as in the case of transverse waves, holes do not play an essential part (although they 
modify the results), but in addition the waves can be entirely electromechanical, and no 
propagating properties of the lattice need to be assumed. 

This raises the question: given that there is only a single carrier stream present, 
how can there be growth of wave amplitude? 

This paper attempts to answer this question by simplifying the problem to that of a 
plasma system with no temperature gradient (and hence no Nernst effect or thermal 
force), but with a density gradient such as could be induced in a material by nonuniform 
doping or by exposing it to nonuniform radiation. Crossed electric and magnetic 
fields are assumed since experiments to date show unstable behaviour only when there 
is a significant transverse component of magnetic field (Boyd et a1 1972). Furthermore, 
since Landau damping is inhibited under these assumptions we can have greater con- 
fidence in the hydrodynamical approach used here. 

To summarize our results we mention that in 5 6 Briggs’ criteria are formally applied 
to a dispersion relation derived under the quasistatic approximation. It is found that, 
although there is no absolute instability, a convective instability is present. In $ 7  the 
equations are reduced to normal mode form. In the limit of zero temperature, zero 
magnetic field and no collisions these normal modes become the usual Hahn-Ram0 
‘fast’ and ‘slow’ space-charge waves. 
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These modes are uncoupled, but when there is a nonzero density gradient they become 
strongly active-coupled as shown in §§ 7 and 9. 

2. Basic equations 

The equations of continuity and force are, in rationalized MKS units, 

- - v . p u  aP 
at 
_ -  

du e kT V p  
- = - ( E + u x B ) - v u - - - ,  
dt m m F  

where vu is the frictional force between the particle concerned and the environment 
(eg the lattice and other particles). 

In a solid-state plasma of holes and electrons for example e, v, m, T, p and U will be 
different for the two classes of carrier, in general. The electric field E and magnetic 
flux density B will refer to the plasma as a whole. 

There will be a heat flux needed to maintain the system at uniform temperature, 
but we will not be concerned with this in 8 5. Accordingly the heat balance equation 
will not be required. 

3. First-order perturbations 

In what follows a suffix 0 will indicate a steady-state (zero-order) variable, and a suffix 1 
will indicate a time-varying (first-order) variable. Then p = po + p l ,  U = uo + u1 etc. 

We choose axes such that B = Bk, where k = ( O , O ,  1) is the unit vector along the 
z axis. We suppose also that the first order terms vary as exp{i(ot- fl . r ) }  where 
r = (rl , r z ,  r 3 )  = (x, y, z )  is the radius vector from the origin. 

If wavelengths are much smaller than density decay lengths we may make the ‘local 
approximation’ by assuming fl independent of r. When this is the case the continuity 
equation yields 

0 = v . pou, = pov  . U0 + U0 . v p ,  

v . u o  = - u , . 6  (3.1) 

or 

where 

6 = - ,  VPO 
Po 

and 

( w - u o .  (fl-i6)}- P1 = (p+i6). u l .  
Po 

The zero-order force equation is 

e kT VPO (U0 . V)u,  = -Eo + o,uo x k - vu0 -- -, 
m m Po 
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and subtracting this from the force equation yields the first-order force equation 

[{i(o-uo. B)+v) IIUII -oJMIl + 11611]. u1 = - E ,  +i-@-i6)- . e kT P1 
m m P o  

The two tensors 11 Ull, I(Ml1, are 

1: and I-% 8 
0 0 1, 

respectively, and an element of the tensor 116Il is elk = avof/arkt.  If pJpO is eliminated 
from this equation by means of (3.2) the final relation between u1 and E ,  is obtained. 
This can be written as 

[{i(w-~o.B)+v) l l ~ l l - ~ ~ l l ~ l l + l l ~ l l - ~ l l ~ l l l ~ ~ l  =;El. 

where (3.3) 

4. The dispersion equation for a simple carrier system (no holes) in the quasistatic 
approximation 

The procedure is first to invert the tensor in (3.3) which gives 

e 
m U1 = - 11511 * El > (3.4) 

the tensor (elm) IlpIl being the (dynamic) mobility. Then to calculate the first-order 
current density 

i = P O U l  + P l U O  

(from (3.2)) (B+i6). u1 
= P o  i e  ; 11511 .El +U0 o - u o .  p + i v 0 .  6 

and then finally to calculate the dielectric tensor l lc/\  from the total current density, 
j +  ioreoEl = iwt,jlcjl . E , .  It follows that 

(4.1) i wz 
l lcll = /I Ull +$til + 11511) ' i 

t So that llell . U, = (U, .V)U, .  



On gradient-induced instabilities 125 

Here c is the lattice dielectric constant, and 0,/2n: is the plasma frequency. In the quasi- 
static approximation we have El = -V$ = $4. Then since 

V x H ,  =j+iwcroE, = iocoJIcll .E , ,  
and 

V . ( V x H , )  = - B . ( B x H , )  S O  

we have 

iwc,l). (IcJI . P4 0. 

It follows that 

B .  l lcll . B  = 0 
is the required dispersion relation. 

5. Detailed calculation of a special case 

Before inverting (3.3) we shall assume that spatial variations in uo are small enough for 
llell to be ignored. This is valid if the temperature Tis large enough so that llgll dominates 
~ ~ ~ ~ 1 .  This assumption proves to be a great simplification. 

We also assume that fl is normal to the direction of the magnetic field; that is, B lies 
in the (x, y )  plane. By rotating the axes we can arrange for fl to be along the x axis, 

We now consider the special case where 6 = (6,0,0) is parallel to the direction of 

The quasistatic approximation, B x  E ,  = 0, now shows that E, = (E,,O,O). 

B = (P, 0,O). 

propagation. 

Furthermore 

llgll = 0 0 0 1: : :I 
where 

kT p 2 + a 2  
g l l  = X w-u,p+iuo6’ 

and where uo = (uo , uoy ,  uoz). 
With these approximations the dispersion relation (4.2) becomes E,  = 0, that is, 

W L  
l+?(tl,+Cll) = 0. 

1 0  

On writing (3.3) out in full and solving for U, we get, on comparing with (3.4): 

t l l  = i(o-u,p-iv) o-uop-iv--  
m w-uop+iuo6 

Since 
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4. 

2 -  

the dispersion equation is, after re-arranging 

w(w - u O P  + iuo6)(o - uoP - iv)* - o,Z(o - uoP + iuo6)o - w,2(o + 2iu06)(o - uOb - iv) 

kT 
m 

- (P2 + S2)(w - u0p - iv)o-- = 0. (5.1) 

6. Application of Briggs' stability criteria 

To apply these criteria it is necessary to examine the behaviour of the complex roots of 
the dispersion relation (5.1), which is a quartic in o and a cubic in P with complex 
coefficients. One of us (DMS) developed a computer program (the details of which are 
given in Short 1972) which enables root loci to be displayed graphicaily with the 
incremental density gradient 6 as parameter. 

Figures 2-5 give some of the results, with v = o, = 1013 s - l ,  o, = 10'os-l, 
uo = lo6 m s-  I, kT/m = lo9 m2 s-*.  

Figure 1. Orientation of the axes. 

(I - 5 s  

2 Or 

Figure 2. Roots in w plane for p real with S = 0. 
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Figure 3. Roots in j3 plane for complex w with 6 = 0. 
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Figure 4. Roots in w plane for j3 real with S = v/lOu,. 

Or 

When 6 = 0 equation (5.1) becomes a cubic in w and p multiplied by w as a factor. 
Accordingly one of the root loci becomes the point w, = 0 wi = Of, as shown in figure 2. 
The system is expected to be stable when 6 = 0, and figures 2 and 3 show that oi 2 0, 
fli < 0, which confirms the stability within the ranges shown. 
t Where w = or + ioi. Also j3 = j3, + iBi .  
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Figures 4 and 5 are the corresponding root loci when 6 = v/lOuo. Figure 4 shows a 
root locus with mi < 0 for a small frequency wJ2n indicating an instability; however 
figure 5 shows that there is no absolute instability since the roots merging in the saddle 
point at  S both come from the lower half-plane of /?(see Briggs 1964). It is clear, however, 
that a convective instability exists since pi > 0 when wi = 0, and fii changes sign when 
wi -, - 03 (Briggs 1964), and accordingly wave amplification can be expected provided 
6 is large enough. 

Figure 5. Roots in /3 plane for complex o with 6 = v/lOu,. 

7. Interpretation of results 

Probably the best way to get a physical picture of the system is to write the equations in 
coupled mode form (Louise11 1960). To do  this we return to the case studied in 0 5. 

We have j,+iwtcoE, = iwrotllE, = 0, because c l ,  = 0. We also have 

w + 2iu06 
= €E O w2 p w - u o ~ + i u o ~  5 1  ,El 

from 0 4. Thus the system to be normalized is 

j ,  = -iorcoE, 

w - uop + iuo6 
E, = t l1(m+2iu06)~,2~tO j, 

(7.1) 

(7.2) 

Equation (7.2)can be written asj, = oE , where the complex ‘conductivity’ CT is a function 
of 6 .  We now write 

= C l  +a2(4, say, where a2(0) = 0. 
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We have seen that when 6 = 0 no unstable behaviour takes place, and so we expect 

Therefore define a, 4 Aj,+ B E , ,  a- 9 Aj, - B E , ,  where A and E are to be deter- 
to find uncoupled normal modes in this case. 

mined, and substitute into 

i .  
El = -Jx 

0 € € 0  

j ,  = O l E , .  

@ , A - B ) a +  = 0 
( o , A + B ) a -  = 0 

The result is : if B2 = - ia ,occoA2 then 

(7.3) 

We thus have two uncoupled normal modes a, and a- with dispersion relations 

= , - id= = o 
o , + i , / G  = 0 

respectively?. We note in passing that 

(7.4) 

0 ,  = 
0: - (0 - U o P ) 2  

when T = v = 0. Thus for the a, mode 

0; = - ( + ) 2 { 0 : - ( o - u o p ) 2 }  

0;+w:  = ( + ) 2 ( 0 - u 0 P ) Z  

= u o P + J m .  

Jm 
P 

The phase velocity = uo + 
> U0 when/? > 0. 

Again for the a- mode at  zero temperature and with no collisions 

w;+0 :  = ( - )2(0-uop)2 

0 = U , P - , / q G &  
or 

In this case the phase velocity is u,,-,/-/fl < uo always (U, > 0). Thus a, is a 
‘fast’ mode and a- a ‘slow’ mode. These modes reduce to the Hahn-Ram0 modes when 
0, = 0. 

On the other hand if T # 0 but v = 0, = 0 we get 

0, = - 
( W - U o P ) 2  - (kT /m) /P’  

t a ,  and a-  are calculated on the assumption that U, # 0. The damped almost synchronous mode (DSM) 
appearing in figures 2-5 is a result of choosing a rather small value for oJo,, for then O-  U,$- iv  is almost a 
factor of the dispersion relation (5,1), and this implies that U, = 0 gives a mode of the system. 
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and so the dispersion relations (7.4) combine to give 

kT 
m 

(W-Uo/?)Z--j?2 = CO;. (7.5) 

The temperature is held strictly constant in this calculation, whereas in general 
temperature waves should also be allowed for. To do this put T = To+ Tl , and replace 
the first-order pressure term 

- 

in the first-order force equation of 6 2. As a consequence a term 

ikTo TI -(fl+i6)- 
m TO 

appears on the right-hand side of the first of equations (3.3). Also a suffix ‘0’ must be 
attached to T in the expression for g,, . 

The heat flux equation is now needed to eliminate Tl/To as was done by Boyd er a1 
(1972). If the system obeys a quasi-adiabatic law for example (Newton 1963) with one 
degree of freedom then Tl/To = 2p , /p , .  

In this case (7.5) is replaced by 

which, when uo = 0, leads to the well-known relation of Bohm and Gross, or Vlasov. 
In what follows we shall stick to our assumption of strictly constant temperature. 

8. Kinetic power flow by means of the carriers 

By Chu’s kinetic power theorem (Steele and Vural 1969) the power flow (in W m-2)  is 
p =  -- Re(Yi3, 

where 

e 
m = -uoS11E1 

Accordingly 

P = -iuo Re(c 11 E lj3e 
But 

2 la+I2-la-l -u-a*,+a*_a+ 
4A*B SllEljx* = SI1 

and 
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whence 

We have already fixed the ratio A / B  in $7. We now further restrict A and B to be such 
respectively. Then if W is the that the energy density of the two modes is la+12 and 

energy density of the system we have 

w = la+l2+(a-I2 = 2{IAI2lJ,I2+IBI2IE~I2) 

= 2{1421~112 +IBI2) IEl12. 

From (7.3) 

B = f a l A ,  

and it follows immediately that 

w = 41A121a1l2tE1I2. 

Clearly 

using (8.1) and (8.2). 
The kinetic power flow is therefore 

When only the mode a- is present, so that a+ = 0, 

which is negative, so that when one mode is passive (positive energy carrying) then the 
other is active (negative energy carrying). 

This is an unstable situation since if there is coupling such that energy is removed 
from the active wave and added to the passive wave both amplitudes grow. 
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9. Modecoupling 

When 6 # 0 our equations become 

j ,  = o i E 1 + 0 2 E i .  

Equations (7.3) are now replaced by 

(a,A-B)a+ = -+a,A(a+ - a - )  

( o , A + B ) a -  = 302A(a+ - a - ) .  

This indicates that a + and a - are strongly coupled, the mutual coupling being the same 
in both directions between the modes. The dispersion relations are 

B = A&, -3a2)(a1 +302) 

and 

B = -AJ(o ,  -$J2)(01 +$a2) 

respectively, with B2 = ialwrcoA2 as before. 

10. Conclusion 

We have shown that the unstable behaviour of the particular case analysed in # 5 and 6 
is due to coupling between travelling-wave modes : coupling which is present only when 
density gradients are present. 
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